R. E. Lucas Master Thesis
References
Abouelseoud, G., Abouelseoud, Y., Shoukry, A. A., Ismail, N. E., & Mekky, J. (2022). A Mixed
Integer Linear Programming Framework for Improving Cortical Vision Prosthesis Designs.
Social Science Research Network. https://doi.org/10.2139/ssrn.4010997
Art Equilibrium. (2020). Street New York — 3D Urban — Unity Asset Store. https://assetstore.
unity.com/packages/3d/environments/urban/street-new-york-183319#publisher
Barrett, J. W., Berlinguer-Palmini, R., & Degenaar, P. (2014). Optogenetic approaches to retinal
prosthesis. Visual Neuroscience, 31 (4-5), 345–354. https://doi.org/10.1017/s0952523814000212
Bertozzi, M., Broggi, A., Cellario, M., Fascioli, A., Lombardi, P., & Porta, M. (2002). Artificial
vision in road vehicles. Proceedings of the IEEE, 90 (7), 1258–1271. https://doi.org/10.
1109/jproc.2002.801444
Bhowmick, A., & Hazarika, S. M. (2017). An insight into assistive technology for the visually
impaired and blind people: State-of-the-art and future trends. Journal on Multimodal User
Interfaces, 11 (2), 149–172. https://doi.org/10.1007/s12193-016-0235-6
Bollen, C. J., Van Wezel, R. J. A., Van Gerven, M. A. J., & G¨u¸cl¨ut¨urk, Y. (2019). Emotion Recog-
nition with Simulated Phosphene Vision. Proceedings of the 2nd Workshop on Multimedia
for Accessible Human Computer Interfaces, 1–8. https://doi.org/10.1145/3347319.3356836
Bousbia-Salah, M., Redjati, A., Fezari, M., & Bettayeb, M. (2007). An ultrasonic navigation system
for blind people. 2007 IEEE International Conference on Signal Processing and Communi-
cations, 1003–1006. https://doi.org/10.1109/icspc.2007.4728491
Chen, S. C., Suaning, G. J., Morley, J. W., & Lovell, N. H. (2009). Simulating prosthetic vision: I.
visual models of phosphenes. Vision research, 49 (12), 1493–1506. https://doi.org/10.1016/
j.visres.2009.02.003
De Ruyter Van Steveninck, J., G¨u¸cl¨u, U., Van Wezel, R. J. A., & Van Gerven, M. A. J. (2022).
End-to-end optimization of prosthetic vision. Journal of Vision, 22 (2), 20. https://doi.org/
10.1167/jov.22.2.20
De Ruyter Van Steveninck, J., Van Gestel, T., Koenders, P., Van Der Ham, G., Vereecken, F.,
G¨u¸cl¨u, U., Van Gerven, M. A. J., G¨u¸cl¨ut¨urk, Y., & Van Wezel, R. J. A. (2022). Real-world
indoor mobility with simulated prosthetic vision: The benefits and feasibility of contour-
based scene simplification at different phosphene resolutions. Journal of Vision, 22 (2), 1.
https://doi.org/10.1167/jov.22.2.1
Dobelle, W. H., Mladejovsky, M. G., & Girvin, J. (1974). Artificial vision for the blind: Electrical
stimulation of visual cortex offers hope for a functional prosthesis. Science, 183 (4123), 440–
444. https://doi.org/10.1126/science.183.4123.440
Fernandes, R. A. B., Diniz, B., Ribeiro, R., & Humayun, M. (2012). Artificial vision through
neuronal stimulation. Neuroscience letters, 519 (2), 122–128. https://doi.org/10.1016/j.
neulet.2012.01.063
Fornos, A. P., Sommerhalder, J., Rappaz, B., Safran, A. B., & Pelizzone, M. (2005). Simulation of
Artificial Vision, III: Do the Spatial or Temporal Characteristics of Stimulus Pixelization
Really Matter? Investigative Ophthalmology Visual Science, 46 (10), 3906. https://doi.org/
10.1167/iovs.04-1173
Giudice, N. A. (2018). Navigating without vision: Principles of blind spatial cognition. In Handbook
of behavioral and cognitive geography. Edward Elgar Publishing.
Gonz´alez-Mora, J. L., Rodriguez-Hernandez, A., Burunat, E., Martin, F., & Castellano, M. A.
(2006). Seeing the world by hearing: Virtual acoustic space (vas) a new space perception
system for blind people. 2006 2nd International Conference on Information & Communi-
cation Technologies, 1, 837–842. https://doi.org/10.1109/ictta.2006.1684482
19