References
Blatter, K., Graw, P., Münch, M., Knoblauch, V., Wirz-Justice, A., & Cajochen, C. (2006).
Gender and age differences in psychomotor vigilance performance under differential
sleep pressure conditions. Behavioural Brain Research, 168(2), 312–317.
https://doi.org/10.1016/j.bbr.2005.11.018
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32.
https://doi.org/10.1023/a:1010933404324
Buysse, D. J., Reynolds, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The
Pittsburgh sleep quality index: A new instrument for psychiatric practice and research.
Psychiatry Research, 28(2), 193–213. https://doi.org/10.1016/0165-1781(89)90047-4
Bzdok, D., Altman, N., & Krzywinski, M. (2018). Statistics versus machine learning. Nature
Methods, 15(4), 233–234. https://doi.org/10.1038/nmeth.4642
Centraal Bureau voor de Statistiek. (2020, October 15). Hoeveel mensen komen om in het
verkeer? https://www.cbs.nl/nl-nl/visualisaties/verkeer-en-vervoer/verkeer/hoeveel-
mensen-komen-om-in-het-verkeer-
Chang, S., Cohen, T., & Ostdiek, B. (2018). What is the machine learning? Physical Review
D, 97(5), 056009-1 – 056009-6. https://doi.org/10.1103/PhysRevD.97.056009
De Raedt, R., & Ponjaert-Kristoffersen, I. (2001). Predicting at-fault car accidents of older
drivers. Accident Analysis & Prevention, 33(6), 809–819.
https://doi.org/10.1016/S0001-4575(00)00095-6
Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep
stage identification system based on time–frequency analysis of a single EEG channel
and random forest classifier. Computer Methods and Programs in Biomedicine,
108(1), 10–19. https://doi.org/10.1016/j.cmpb.2011.11.005.